Theory of the double-edge technique for Doppler lidar wind measurement.
نویسندگان
چکیده
The theory of the double-edge technique is described by a generalized formulation that substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared with the single-edge technique. Use of two high-resolution edge filters reduces the effects of Rayleigh scattering on the measurement by as much as an order of magnitude and allows the signal-to-noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. The effects of Rayleigh scattering are then subtracted from the measurement, and we show that the correction process does not significantly increase the measurement noise for Rayleigh-to-aerosol ratios as high as 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photons, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh-to-aerosol ratio of 5. Methods for increasing the dynamic range to more than +/-100 m/s are given.
منابع مشابه
Double-edge molecular measurement of lidar wind profiles at 355 nm.
We built a direct-detection Doppler lidar based on the double-edge molecular technique and made the what we believe to be the first molecular-based wind measurements using the eye-safe 355-nm wavelength. Three etalon bandpasses are obtained with step etalons on a single pair of etalon plates. We eliminate long-term frequency drift of the laser and the capacitively stabilized etalon by locking t...
متن کاملMobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.
A mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for measuring wind velocity in the middle atmosphere up to 60 km. The lidar uses three lasers with a mean power of 17.5 W at 355 nm each and three 1 m diameter telescopes to receive the backscattered echo: one points to zenith for vertical wind component and temperature measurement; the two others pointing...
متن کاملEdge technique: theory and application to the lidar measurement of atmospheric wind.
The edge technique is a new and powerful method for measuring small frequency shifts. With the edge technique a laser is located on the steep slope of a high-resolution spectral filter, which produces large changes in transmission for small frequency shifts. A differential technique renders the frequency shift measurement insensitive to both laser and filter frequency jitter and drift. The meas...
متن کاملWind measurements with 355-nm molecular Doppler lidar.
A Doppler lidar system based on the molecular double-edge technique is described. The system is mounted in a modified van to permit deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45-cm-aperture telescope, and a matching azimuth-over-elevation scanner to permit full sky access. Validated atmospheric wind profiles were measured from 1.8 to 35 km with a...
متن کاملField demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar.
We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measurements with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Doppler lidar. Reliable winds and temperatures were obtained in the altitude range of 10-45 km with 1 km resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 37 15 شماره
صفحات -
تاریخ انتشار 1998